Appendix A

THE THEORY OF FORMATION OF THE K-CORONA

A.1  The general theory on scattering of radiation by free electrons

Figure (A.1). The general coordinates where I is a field

. ', .
point and I' is a source point.

197



Consider a system whose charges and currents are varying in time. There is no
loss in generality by restricting our considerations to potentials, field and radiation from

localized systems that vary sinusoidally in time.

The time dependent charge and current densities could be written, respectively, as given

by equation (A.1) and equation (A.2), based on coordinates shown in figure (A.1).

p(r',t) = p(r) e~ 1Kt (A1)
I, t) = J(r)e It (A2)
And the continuity equation is given by equation (A.3).

0.J +g—‘t’ =0.J + (-iwp) =0 (A3)

The scalar and vector potentials for the charge distributions are given, respectively, by

equation (A.4) and equation (A.5).

n_ ikjr -1’
V() = 1 jp(rﬁ)e Ir ~|d3rﬂ, (A4)
4Te |§—1j|
0
H ")elKlr =1
A(r;)=—°l‘l(£)e £ -r] 3y (A5)

am e-r

198



In the far radiation zone, where r >> A and r >> r/, the denominator |r- r/| can be
considered to be independent of 1 although the argument of the complex exponential is
not. Thus, equation (A.5) could be written as equation (A.6).

ikr

A(r) = Hye (3™ ik(rxr /1) a3 (A.6)

4T r

Also if the source dimension r’ is small compared to the wavelength, thenk ' << 1 which

justifies writing equation (A.6) as equation (A.7).

u ikr = 1 ' 1
A®) =_oe_zﬂj J(r:{ 5'5] a3 (A7)

The above is true since the electron diameter of 5x 10> m is very small compared to the
wavelength of visible light of 5x 10°’m. Therefore the expansion of the exponential
term in the integrand of equation (A.6) is justified by the summation given equation

(A.8).

' _a\l
e_ik(E-E /r) = Z( ik) (r.r'/r)l (A.8)

The scattering of electromagnetic radiation by systems whose physica
dimensions are small compared with the wavelength of the wave being scattered, it is
reasonable to assume that the incident radiation as inducing electric and magnetic

multipoles and these to oscillate in definite phase relationship with the incident wave and
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also radiate energy in directions different from the direction of the incident wave. For the
case where the wavelength of the incident radiation is very long compared to the size of
the scatterer, only the lowest multipoles, usually the electric and magnetic dipoles (1=0)

are important.Therefore for electric dipole radiation (I=0) equation (A.7) reduces to

eguation (A.9).
P ikr

A@) = —[Iradr (A.9)
4 r

Consider the following mathematical operation

0.(x'J) = (@'x).d +x'(0".J)
=Jxt X'(D"‘_].)
O3, =0.(xJ3)-x(0.J)
Jaxad =[O (x3)ar -[x([@)ad
=fx'Las-[x'(0"d)a’
Using equation(1.3)
] ] ap 3 !
=§x'dds +[x'—q r
ot

Usingequation(1.1)and integrating over a large enough volume

O-iwfxpa3r
and for all components of J

(I )d3r =—iefr'p@r )d3r = ~ioyp (A.10)

where dipole moment p =jr’p(1:')d31:'
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Equation (A.11) can be written from equation (A.9) and equation (A.10).

=i ikr
o p (A.11)
4Tt r

Ar) =

Then, using equation (A.11) the magnetic field is given by equation (A.12).

. ikr
e )
o

and using polar coordinates
Orep=d+20, 2 0
“0r r 00 rsin(0)dQ

Kkr
wkl, 1 \e™
B= 1-— r X A2
B ( ikr) —ixp (A12)

From Maxwell’s equations for outside the source (J=0) the magnetic and the electric

fields are related by equation (A.13).

OxB € 6112_'_ J in
b=U — T =-—FL
*9 ot o2 (A.13)
2 w
wherec” = andk =—
M€ c
00

From equation (A.13) the electric field is given by equation (A.14).

E(r)=—0xB() (A.14)
w
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And using the following vector identities

Ax(BxC)=(a.C)B-(a-B)C

Ox(AxB)= A(D.B)-B(OxA)+(B.O)A - (A.0)B

and the relations

O

V>

2
=—, 0r=3andp ¢p(1;)
r

— —

on equation (A.14) the expression for the electric field is given by equation (A.15).

be)= o € pafpi)e ) ) ) a9

4m r 41'[80 r3 o

In the radiation zone kr>>1 where k = w/ ¢ the equations (A.15) and (A.12) reduce to

equation (A.16).

E()0— 0 —ix(pxi)

AT (A.16)
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The Poynting vector (average power radiated per unit area) is given by equation (A.17).

(s)= X2 Watts/m? (A.17)

Using equation (A.16) and the vector identity

(AxB)xC=(A.C)B-(B.C)Aand D.(DXE)=0 and k=w/c the Poynting vector
given by equation (A.17) reduces to equation (A.18).

4
W A )
(s)= 321'[2r02c ([XB)ZE Watts/m’ (A.18)

Then the total power radiated through an area da is given by equation (A.19).

dL =(S).da =(S).fr’dQ Watts (A.19)

Substituting equation (A.18) in (A.19) gives equation (A.20).

4 4
dL.= > @"p)z fir’dQ=—:7" (ﬁxp)z dQ Watts (A.20)
3211 rle 321‘[2c

Now for an oscillating electric dipole the induced moment p is given by equation (A.21).

— —iut
P=p.¢ (A21)
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Differentiating equation (A.21) twice with respect to time gives equation (A.22).

— 2
p=wp (A.22)

Substituting equation (A.22) in (A.20) gives equation (A.23).

Ho [~_ ..
dL = xp)dQ Watt
32nzc(E 13)2 atts (A.23)

For a single electron the induced moment p isgiven by

p(t) = er'(t) (A.24)

-

where l;' is asource point with respect to its origin.

From the equation of motion in the non-relativistic case
mr' = e(E + v xB) OeE (A.25)
where m is the mass of the electron.

Substituting equation (A.25) in (A.24) gives equation (A.26).

"
1
()
[ 5]
=

(A.26)

5|,
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Again substituting equation (2.26) in (2.23) gives equation (A.27).

me? ) 32"
Diving and multiplying equation (A.27) by 6Tte, givesequation (A.28).

_ 3 ~ )2
dL —EGT%C(XXE) dQ (A.28)

where O isthe Thomson scattering cross section given by equation (A.29).

1 (Y
o =_[ ¢ ZJ (A.29)
611E, | Mc

Therefore from equation (A.28) the power radiated per unit solid angle is given by
equation (A.30).

daL _ ioT (FxE)* Watts/solid angle (A.30)
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A.2  Total power radiated per solid angle for the cases where the electric vector is

aligned parallel and perpendicular to the scattering plane

Consider the case where the electric vector is paralé to the scattering plane. In
figure (A.2) m, and N are unit vectors in the directions of the incident and the
scattered radiation and they both lie on the scattering plane and © is the scattering angle.

A S

E //c is the unit vector of the component of the electric vector paralel to the scattering

A Sc . . .
plane and E, isthe unit vector of the component of the electric vector perpendicular to
the scattering plane.

=

Scattering plane

i, in xy plane

Yo

Figure (A.2). The general coordinates of the incident and scattered
radiation and the orientations of the parallel and the perpendicular
components of the electric vectors with respect to the scattering plane.
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The direction cosinesof M and N, are given by equation (A.31) and equation (A.32),

respectively.
fjp = (- Sin(e - ;)' cos(@ - ;J,O) = (cos ©,~sin ©,0) (A31)
fiout = (1,0,0) (A.32)

From figure (A.2) the dot product of 1, and N, gives equation (A.33)
fin Aout = [fijn|Rout|cos(®) (A.33)
and the square of its cross product gives equation (A.34).

Ny ‘2 l:lout‘z sin’ (G)) (A.34)

A A 2 _
(M XNoyue)™ =

Sc
O

The direction cosines for the electric vectors E/S/c and E are, respectively, given by

equation (A.35) and equation (A.36).

Eic = (— sin(Tt— ©), cos(T[— O),O) = (— sin ©,—cos G),O) (A35)
i =(0,0,1) (A36)
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The sum of the cross products of equation (A.32) with (A.34) and (A.35) is gives

equation (A.37).
i i Kk |i ]k
A Sc Sc e -
liouth// +l:!0uthEl = 1 0 0 +1 0 0
—-sin® -cos® 0 [0 0 1 (A.37)

= —cos@l& +j

From figure (A.2) using the relation ﬁ = ﬁou and equation (A.37) the following

t

relations are obtained as given by equation (A.38) and equation (A.39).
c 2
(ﬁ x E/S/ E/S/) =(E5*)?sin*(90 - @) = (E’*)* cos’ © (A.38)

c 2
(gxgsu ESD°) = (E3)? (A.39)

Now substituting the equation (A.38) and equation (A.39) in equation (A.30) give

equation (A.40) and equation (A.41), respectively.

Sc
dL 3 sev2). 2
— | =——o0o;lggc(E cos’ @ (A.40)
(dQ)// 16T[ T( 0 ( 1/ ) )
Sc
dL _ 3 Sc 12
(dQ)D = 1o Boc(ED)’) (A41)
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But for isotropic radiation equation (A.42) istrue.

Sc
E}

— |y Sc
-‘Eu

=1
=5 E (A42)

Substituting equation (A.42) in (A.40) and (A.41) give equation (A.43) and (A.44),

respectively.

Sc
dar =i0T lcEOE2 cos? @ (A43)
dQ), 16m '\2
ﬁ > —io' lcs E2 A.44
aQ ), 16m (2 ° (A-44)
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Consider a plane monochromatic wave as shown in figure (A.3).

. E(x,t):Eocos(kx—mt+5)j C‘
My

/AN

]_S(x,t) = Ecos(kx -t + )k
c

Figure (A.3). Propagation of a monochromatic plane EM waves.

Using the Poynting vector S = LE xB the energy flux density transported by the plane

[\]

monochromatic electromagnetic wave depicted in figure (A.3) is given by equation

(A.45).

S = cgoE? cos? (kx - wt + 3)i (A45)
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and averaging equation (A.45) over acycle gives equation (A.46).

(S)=cg)E; <c0s2 (kx Jam, 5)>i
N T

1T 21 .
=cg, B2 — [cos?| kx —=—t +J [dti
cE, OT(j)cos(x T )d; (A.46)

1 2%

From equation (A.46) the average power per unit area transported by an electromagnetic

wave is called the intensity and is given by equation (A.47).

I, =(S)= %ceoEﬁ

(A.47)

Substituting equation (A.47) in equation (A.43) and equation (A.44) give equation (A.48)

and equation (A.49), respectively.

Sc 0
I = (%J = %GTI0 cos’ © Joules/sec.steradian. A .electron (A.48)
Tt
l
w _(dLY* 3 0
Iy = a0 =FGTIO Joules/sec.steradian. A .electron (A.49)
Tt
o

where I, istheincident radiation.
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Consider aradia planeinclined at an angle a to the scattering plane, as shown in figure

(A.4). The variation of intensity through an angle B isgiven by equation (A.50).

1=1, cos*p (A.50)

where I isthe maximum intensity.

=

o
-
-
-

Figure (A.4). Coordinates for the rotational transformation of the
scattering plane through an angle a about the line of sight.
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From figure (A.4) and using equation (A.50) equation (A.51) and equation (A.52) are

obtained for the intensity parallel and perpendicular to the radial plane, respectively.

Tt
I =15 cos* a + 1} cosz(E —GJ

=1} cos* a + 13 sin’ a

Tt
IR =13 cos’* a +1 cosz(— —GJ
2

=1} sin* a +1} cos’ a

(A51)

(A.52)

Substituting equation (A.48) and equation (A.49) in equation (A.51) and equation (A.52)

give equation (A.53) and equation (A.54), respectively.

Ra
I = L] =iGTIO(sin2cx+cos2@cos2a)
dQ), 16w

=1 sin’ a + 15 cos’ a

= Q™ (a,®)I, Joules/sec.steradian.A° .electron

Ra
L
IIE{Ia = d_ = io‘TIO(c()s2 O + cos’ Osin*? a)
Q). 16m

=13 cos’ a+1I) sin’

= QX (a,®)1, Joules/sec.steradian.A° .electron
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Using the scattering theories derived above the same could be applied for the
scattering of photospheric radiation by the corona electrons. Figure (A.5) shows the
corresponding geometrical configurations depicted by figures (A.2) and (A.4) for the case
of photospheric radiation being scattered by the coronal electrons to an observer on

earth.

Scattering plane

=

Radia plane

E electron
C center of Sun

S source point

O observer

SEO scattering plane
CEO radial plane

Figure (A.5). Geometrical configuration for the scattering of photospheric
radiation by coronal electrons.
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The following figure (A.6) shows the geometrical configuration for the formation

of the K-Corona, which also incorporates the effect due to the radial solar wind.

Figure (A.6). Geometrical configuration for the formation of the K- Corona.
Photospheric radiation emitted from a point S on the Sun is scattered from an
electron E towards an observer O. The solar wind on the electron is radial and
blows in the direction CE.
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A.3  Contribution due to Compton scattering

In the rest frame of the electron the scattering of the photospheric light incident on
the electron is coherent. The red shift due to the Compton effect is very negligible. To
qguantify the contribution due to Compton effect, consider radiation of wavelengthA
incident on a stationary electron, as shown in figure (A.7). Let the radiation scattered off

the electron be of wavelength A" and the velocity of the electron now be v. The

scattering angles for the radiation and the electron are, © and ¢ , respectively.

Scattered radiation
Y Y

A

=_—

Incident radiation

Electron

y

v

A
v

Before collision After collision

Figure (A.7). Scattering of radiation off an electron also known as Compton
scattering.
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From conservation of energy in figure (A.7) equation (A.55) is obtained.

he _ he +me? 1 (A.55)

From figure (A.7) using conservation of momentum in the X the Y directions,

respectively, equation (A.56) and equation (A.57) are obtained.

% = %cos 0+ LZCOS ¢ (A.56)
()
c
M Sing (A.57)
()
c

h = Planck constant = 6.63x107** J.s

m = electron mass = 9.11x10™"' Kg

0= %sin 0+
where

¢ = speed of light =3 x10® ms™

Eliminating ¢ and v from equation (A.55), (A.56) and (A.57), the wavelength shift is

given by equation (A.58).
A =N -A =" (1-cosb) (A.58)
mc

=0.0243A° (1 - cos 8) < 0.0486A"
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A4  Expression for the total K-Coronal scattered intensity

From figure (A.6) for the calculation of the total K-Coronal scattered intensity in the rest

frame of the eectron, first, it is necessary to consider an electron velocity distribution over a

volume element at P in order to determine the number density. Consider a Maxwellian velocity

distribution for the corona electrons. Then the number density at the point P in the velocity

interval (u,u +du) is given by equation (A.59).

f.(u)=N. ()

where

)
3
(/)
. / 2KT, -
q(P) = mean electron thermal velocity = == 5508\/T7e kms™
me

k  =Boltzmann constant =1.38x10 2 JK ™'

m, =electronmass =9.11x107" kg

T, in 10° Kelvins
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However, in the rest frame of the observer, the scattered radiation off a moving
electron will be altered in wavelength from the monochromatic radiation incident on that

electron. Consider a coronal electron with velocity u subjected to radial solar wind

velocity w in a coordinate system where the x-axis bisects the supplement of the

scattering angle, as shown in figure (A.8).

Scattering plane <

cﬁ‘ée O
Q“0\0 “(An,,)+14(An,,)
¢ g n

1(.) v

(o, +w)

Figure (A.8). Construction to obtain an expression for the scattered
intensity in the rest frame of the observer. Consider a coronal electron with
velocity u subjected to radial solar wind velocity w in a coordinate system

where the x-axis bisects the supplement of the scattering angle.
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From figure (A.8) the direction cosines of the unit vectors n, and n_ arethen given by
eguation (A.60) and equation (A.61).

n,_ =(-cosy,siny,0) (A.60)
n = (cos Y, sin y,O) (A.61)

And the net velocity vector V is given by equation (A.62).

Xz(ux +Wx’uy +wy’uz +Wz) (A.62)

From Doppler effect, in the rest frame of the observer, the observed radiation has

wavelength given by equation (A.63).

e (A.63)
)\ observed = A scattered | 7
1 + —out —
C
The relationship between A, .rvea @ A oiospnere 1S 9iVEN by equation (A.64).
1
n_.V)2
1+ —in —
- C
A scattered )\ photosphere n—‘\] (A'64)
1 —in —
C
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From equation (A.63) and equation (A.64) eliminating A, ... 9iVesequation (A.65).

1 1
1 ——out ARk 1+ lei—— ?
Numerset =M potogie| —— c (A.63)
1+ l_!out X 1- u
C C

Since the speed of light ¢>> V equation (A.65) can be reduced to equation (A.66).

@. -n ).V 2
in —out / —

}\observed I:l)\ hotosphere ( - \ (A'66)
P 1_(.1—1'in _l—!out)°Y.

1+

C

By Taylor expansion of equation (A.66) it could be reduced to equation (A.67).

observed I:l }\ photosphere (I_l

¢ (A.67)

OA photosphere (1 + MJ
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From equation (A.60), (A.61) and (A.62) equation (A.68) could be obtained.

b, .., )ﬁ:[-zcos{“x *Wxﬂ (A.68)
c c
From equation (A.67) and equation (A.68) and using the notations used in figure (A.8)

equation (A.69) could be obtained, which relates between A ... @d A

photosphere *

A :)\'(1 - ZCOS\{u" W, D where
¢ (A.69)

}\ = A observed
A=A

photosphere

Equation (A.79) is obtained by rearranging equation (A.69).

C C

(Zcosy)\ )“x _[A,(I_Zcosywx)_)\}zo (A.70)

Equation (A.70) satisfies the condition that scattering is coherent in the rest frame of the

electron.
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Now, from figure (A.8) and equation (A.53), (A.54), (A.59), (A.70) the intensity

scattered from an electron at point P is given by equation (A.71).

L on,, )+ 15 Bun,, )= 1000, ) Q1 (0, 0) + QF (0, ©))x ND

where

W v 5{(2“’”’)‘) x—()\'(1—Zc:sywx]—)\ﬂduxduyduz

The expression for ND in equation (A.71) reduces to equation (A.72).

2

N( Ie ydu Ie uzdu X

() -
&)

3y ' 2bw d 2b):ux
e

2
2b
W, _}\J
c 1

ND = ——+-

P) () (Vi) exp _(A'(l_

(V) 2bgA"’ (ZbA')
' C
[ 2bw )’ |
N G
2\/TiAb (2b)
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From equation (A.71) and (A.72) the scattered intensity from point P is given by equation

(A73).

2
A —)\'[1— wax)

13 (on,,, )= 1(0"n,, )x Q5 (@, 0)x -

exp| —
b P 2Ab

(A73)
where O = (//,00)

To obtain an expression for the total observed scattered intensity, from figure (A.6), the

eguation (A.73) needs to be integrated over the following parameters.

1. All wavelengths from each point on the photosphere

fan’

0 (A.74)
2. From all points on the photosphere

M @ 2 1

jd¢ jsinwdws jdq) jdcosw (AT5)

0 0 0 cos .
3. From al points along the line of sight

j dx (A.76)
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From figure (A.6) and figure (A.8) the radial solar wind velocity has components given

by equation (A.77).

w= (— COS WCOS Y, oS wsin Y, sin (,o) = (wX sW oW, ) (A.77)

Using equation (A.74), (A.76), (A.76) and (A.77) in (A.73) gives the expression for the
total observed intensity for a given observed wavelength A at a given line of sight

distance p from the center of the Sun (see figure (A.6)), as given by equation (A.78).

+002 7T

15 0p)= [ j jd)\'dcoswdibdxx

-0 cosw 0

N.(r)x Q& (o, ©)
i 2b* cos wW(r), . ]
A _)\’(1 + radlalj
! I()\' n )exp - ¢
2Jmab - " 2Ab (A.78)

where O = (//,00)
// parallel to the radial plane

Uperpendicular to the radial plane
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A.5 Expressions for the dependent variables in equation (A.78) in terms of the
independent variables
Figure (A.9) is a highlight from figure (A.6) of the triangles formed by SEW

(scattering plane), CEF (radia plane) and CSE.

O
Z
A
C
R
r
SPF scattering plane e
CPF radia plane b---" F
SC solar radius S -~
+ (n-0
W | =g
X
> Y
¢ E r - rR
P - PR,
X — XRsolar
R, =solar radius - 1

X / -

Figure (A.9). Highlighted map of the radial and the scattering planes of figure
(A.6).

From figure (A.9) equation (A.79) and equation (A.80) can be obtained.

ES = |E_S|(sin wcos ¢, sin wsin §, cos oo) (A.79)

EF = [EF|(0,sin X, cosX) (A.80)
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And the dot product of equation (A.79) and equation (A.80) gives equation (A.81).

ES.EF = |E_S||@|(sin wsin ¢ sin X + cos weos ) (A.81)
= |ES|[EF] cos(r- ©)

From equation (A.81) the expression for © isgiven by equation (A.82).

© =T-cos™ (sin wsin ¢ sin X + cos wcos x) (A.82)
Also from figure (A.9) the expression for angle X is given by equation (A.83).

cosX = X (A.83)

From figure (A.6) and measuring distances in solar radius the expression for angle w' is

given by equation (A.84).
sing =HC _1
EC r (A.84)
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From figure (A.6) consider the spherical triangle formed by EDJI, as shown in figure

(A.10).

Figure (A.10). Highlight of the spherical triangle formed by EDJI in figure
(A.6).

From figure (A.10) the relationship between the anglesis given by equation (A.85).

sina _ sin ¢
sinw sin (n— G))

(A.85)
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From equation (A.85) the expression for angle a is given by equation (A.86).

o =sin-! [ sin wsin ¢ ) (A.86)
sin (n - G))

Figure (A.11) shows the triangle ECS from figure (A.6).

Figure (A.11). Highlight of the triangle ESC of figure (A.6).

From figure (A.11) the relationship between the angles 8 and w is given by equation

(A.87).
1 _ r
sinw  sin(mt-0) (A.87)

Osin® =rsinw
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A.6  Expression for the incident solar intensity on the coronal electrons

In order to evaluate equation (A.78) the incident solar intensity I()\',gin) need to
be known. The following expressions are from Astrophysical Quantities by Allen. Let
I(}\',e) be the intensity of the solar continuum at an angle 8 from the center of the disk

and I()\',O) the continuum intensity at the center of the disk. The results may be fitted by

the expression given by equation (A.88).

II((;\\',(?)) =1-u,-v,+u,cos0+v,cos’ 0
’ (A.88)
where u, and v, arelimb darkening constants
Or less accurately equation (A.88) can be written as equation (A.89).
1(x",0)
> £=1-u, +u, cosb
1(\',0) i (A.89)

where cos 0 isthe heliocentric angle shown in figure (A.6).
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And for determining the value of u, it is preferable to make a fit a cos® = 0.5, which

gives the expression given by equation (A.90).

cos’ 8= % (3cos@—1)atcos®=0.5and

1(\',6) 1 (A.90)
I()\",O) =1-u, -v, +tu,cos0+v, E(Scose—l)

3 3
=1 —(uz +EV2)+(HZ +Evz)c0s9

=1-u, +u,cos0 where

_ 3
u, =(u, +EV2

The ratio of mean to central intensity is given by equation (A.91).

.1 3
—1—5 u, +EV2 (A91)

From equation (A.90) and (A.91) the ratio of I(\",8)/F(A’) is given by equation (A.92).

I()\',G) _1-u, +u, cos8

F(\') -ty (A.92)

3
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The emittance of solar surface per unit wavelength rangeis given by equation (A.93).

E(\)=mw(\) (A.93)

And the solar flux outside the Earth atmosphere per unit area and wavelength range is

given by equation (A.94).

1\ — ’ Rsolar ’
f)=EQ )(A—U} (A.94)

From equation (A.90) and equation (A.92) the incident intensity on the coronal electrons

isgiven by equation (A.95).

2
I()\,,e)= l l_ul +u1 COSe AU f(A') (A.95)
T 1
l_gul

solar

In equation (A.94) and equation (A.95) AU is the Sun-Earth distance. The wavelength

dependent limb-darkening coefficient U, can be obtained from Astrophysical Quantities

by Allen
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A.7  Final expression for the observed intensity
From figure (A.6) and equation (A.78) al the following expressions are given in

terms of solar radii, as shown in equation (A.96).

r- rRsolar
p - pRsolar (A'96)

X » xR

solar

And the observed intensity is given by equation (A.97).

1 (\,pR,,, )= Tzf ]‘ o]d)\' dpdcosw d(xR,, )

-0 0 coswy 0

Ne (rRsolar)x(zga (u’e)x

2
5 - }\{1 . 2b? cos (;ow(rRsolar )ra il )

1 C

24/TAb

1(\", 60, x)exp| - o 97

where O = (//,0)
// parallel to the radial plane
Uperpendicular to the radial plane

The expressions for physical parameters in equation (A.97) in terms of independent
variables are given in equation (A.98). Equation (A.99) gives the parameters in equation

(A.97) for which suitable models or actual measurements need to be used.
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3 .
=—0, (sm2 a +cos’ O cos’ G))
Tt

1" 16
Qr =%0‘T (cos2 a +sin’ o cos’ G))
Tt
b=c0sy=cos(n_e)
2
_aN
c
_ [kt
m
I()\'w,x)—l Au Y 1-u, +u, cos® ¢
’ n Rsolar 1 1
_5“1

©=m-cos™ (sin wsin ¢ sin X + cos wcos X)

o =sin”' sin wsin ¢
sin (T[ - G)

X =cos”' (5]
r
® =sin™" (1]
r

0 =sin™" (r sin oo)

r2 =X2 +p2

u, (A") =limb darkening coefficient
f ()\') = extraterrestrial solar irradiance
N, (rRsolar) = electron density model
T(rR,,, ) = coronal temperature model
W(rR

) = solar wind model

solar
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